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109 SOLUTION OF PARTZAL D 1 I T!5L EQUATIM0 S! TE3

RH UAEN-BAILOH TH-O

Sby
P. R. Re irabedis and Max Shiý4fan

In this paper we show how to construot thet Green's and. Neumann's

functions of a line'" elliptic ,"ortial differential equation by a method

based on linear funotionale. The construction depends essentially oh the

- Hahn-Batach extension theorem tiX, which has been used resently in a saimiar

connection by Lax [57. Lax's approach differs from ours in that, while his

•! prooa centers about a bounded linear futional based on inhomogeneouB

,boundary conditions, our proof center's rather-about a functional based on

l the solution of an inhomogeneoua differential equation. This latter point

:I oI view has the advantage that in oonstruating the Orson's and Baumann's

•:•functions we nee~d only a fundametl solution of the d!.?ferentisl equation

in the small, and, indeed, we can succeed with merely a perametrix, which is

readily obtained for a linear elliptic partial differential equation, wheoras

all earlier existence proofs of the type studied here [3, 4, 51 are based on

the previous knowledge of a fundamental solution in the large. Our considers-

tions are also advantageous for domains with general boundaries and for

Riomannian manifolds.

For earlier work on application of the Eahn-Banaoh theorem to boundary

value problems, we refer to the papers of Caocioppoli (21 and of Miranda [6].

It should be mentioned at the outset that the proof of the Fahn-Banaoh theorem

in the form in which we shall need it in this paper does not require trans-

finite induction, sinoe the Banaoh space of continuous functions which we use

is separable. -.4
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2. th fm onl tuationl

Let Pw)P(z)• ;P 0 be a po itive, continuousaly differentiable •nction

of t)e point a it a plane douin D bounded by a finite number of sisple

cloxed analytic ourves 0. Denote by B the Banaoh apace of all functiona f

whiOb are oontinuou. in D+O, with the nora

Ilf H WX If I

.ad denote by BO the subapace of B of funotios

Su-n- Pu

where u is any funotion, continuous with its first and second derivatives in

(2) -• V
For any point w in D, we define a linear funotional L afJ on B' by th-

formula

(3) U(w) = yuu- 3 .

That this linear funotional is uniquely defined and bounded can be showa by

the following argument.

First, if

(4) LU. Ue- 0~

(5) -- 0

on 0, then U > 0 in D. For if U 0 in some subregion of D, we could apply

Green's theorem to that subregion to obtain

where dt is the area element and where d denotes the aro length along the
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boundary 'au..,in of the region U'- 0. By (i), (5) and the condition U-4 0, it

i eolear that che right-hand sde of (6) is non-positive., wbreas it is equally

cleat that the left-hand side of (6) is positive. This contradiation yeilds

the original statement U•O0. Uniqueness of the functional Lw for given

in-Pu, as defined in(V, is an edisate consequence of this. )

Second, let vI- 1/8 , so that

am lot M,, f. Then in D

ANI NY u) - •I(l u -R- f 11 - 1 l fl- 0•o ,

(MVC u) -o ,1

whence Mv1 - a 0. It follos from the definition (3) that for f In 7,3

which proves that L is a bounded functional. 1

We conclude from the Hahn-Banaah theorem that the boundad linear functional

iL can be extended from the vector space B' to operate-on all elements of the

Banach space B and to satisfy (8) there. By applying the eitended functional

in a suitable way, we sh-ll set up an expreession which we shall prove to be the

Neumman's function of the linear elliptic partial differential equation

(9)w-P 0

in D.1

For the construction, we need a so-cdlled parametrix S(w,z) for (9). Such

a paranotrix is a function of w which has a logarithmic singularity at w a

and is such that 6S-PS in continuous, even at the point z. More precisely,

we shall requW..re certain regularity properties of S S- PS as a function of 2,

-I
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and for our present purposes we select S(w,S) to be a symetrie function of

w and z. Let

(10) 8(1,2) -log too~

be a fundamental solution of Laplace's equation in a regiom 3. When E is a

semi-oircle, it is an elementary problem to construct g explicitly in such a

way that g vanishes on the circular arc bounding E and has zero normal deriva-

tives on the diamqter bounding E. We set

•I(ws " "lI (t) g(w't) g(z t)dc2•

and we ::to

(S) S0 (w,Z) - g(w,z) - l'(w,z) + 2(w,,)

whence by Poisson's equation

~S - PS --PIo o "2
which shows, fcr our purposes, that S is a parAmetrix for (9). Zf 3 is the

above semi-circle and g is explicitly constructed in the manner described for

a semi-circle, then S will have a normal derivative which vanishes on the

diameter bounding E. For z in the neighborhood of a point z0 in which we are

interested, we obtain for all w a suitable parametrix S whose normal derivative

vanishes on 0 by multiplying S b•y a function S, with continuous derivatives
0

of the first few orders, which is identicOlly 1 near z. but which vanishes

identically outside a small circle about a.

Having obtained a parametrix S(wz) in this manner, we define the

Neumann's function N(wz) for (9) in D by the formals

(12) N(w,z) - S(w,z)- L•S• -P (t).5Ct, z



and we prood toý sho that N has, as a function )f "t-he ',.vnt a, the bhareater-

istia properties ot the Neumaun's function. It Is eMý,lly. ve..ifiied from tho

definition (3) that N is idependent of the choice of th'- J &Eutrix S, s81e=

the normal derivative of S vanishes on 0 and the diffrocoe' of two duch

perametrlaes is regular.

Firsto aiaos L is a bounded functional, thý qudti-5xyL~? Pt~~~)

depends eontinuously on s, and, indeed, we can dlUItrelktle atith respec't, W .

under the functional L . We obtain

(13) CA (z) NWw,z) u P P(5) 3(w, Z) - ICL P(O ) ,A'P( 3S (tp:0 0

The expression on the right vanishes, according to (3), because,. Is a fut,otion

of w, the expression CL\- P(z)0S(w,z) has continuous seoene dsWivatives in D+O

and has a normal derivative which vanishes on C. Thus N satisfies the jartial

differential equation (9) as a function of z.

Second, N(w,s) has a logarithmic singularity at the toint z-w, jlnce

the second term on the right in (12) is bounded.

Third, we can calculate the normal derivative of N at a 'point zo of C

conveniently by making a special choice of E and g in (ii). The curveu C have

an analytic representation z-o (s) in terms of a parameter a, and we 2oose E

to lie in D and to correspond in the s-plane to a small ser:.-',irale ihose

bounding diameter lies on the real axis and whose center ma;s into z3. We

choose g to be the fundamental solution of the Laplace equalion in 1he semi-

circle which vanishes on the circular boundary and has normal derivative zero

on the rectilinear boandary. Since z- z(s) is a conformal m-ipping, g satisfies

Laplace'oe equation in E also, and substitutioninto 0i) yielde a pa!!ametrix S

with vanishing normal derivativws with irespect to both z and ý, on an arc of C

including the point zo. Multiplication by a function 8 which is identically 1

0



i 'n a 4"ll neighborhood of a, identiOaly zero outeide a slightly larger

neighborhood of zos and has avaniuhing wrmal derivatiVe on O, yields our
" " choice of8, (A selection of & as a function of ai will satisfy, t-hese

-,at,

With this oha,: ne of S in (12), it is pe•zuiaible to compute the normal

d.xi-- Ueva-0 -of N tit respect to . at zo b7 differentiating under the bounded

f.. ,tional L We tfind
S 0.

•~ ~ ~ ~ ~ ~ P : ZL... , •
air M- -ov

- sine * ~ '~' 0 tbhroughout-D,

"" We have thu: shown that N has the three characteristic properties oD the

A-emanls funo~irnn of (n) in D, as a funotion of z, and de conclude therefore

ihat the Neamajin's function exists and is equal to N.

We remtrý: list it is possible to generalise the above existence proof to

-;XZ.tal dlfferedtial eqruions other then (9). Also, th. rt'riotior

Ldependent vasiables is ,zui -. -, a-deed, for more indepen"."'

variables thL rnly additional complioation coma in deriving the boundary

co;.diti6n (1-,), which has been based here on conformal mapping. However, for

gezeral elllpiiio equations in several 7ariables we can treat the easy case of

a ýLane bouvdary without any loss of generality, since we can always find a

tra;sfozrmtlcn of coordinates which takes a small portion of an analytic

surl ace into a portion of a plane and this transformation will merely carry

one olliptic equation into another which can be discussed equally well. In

anoer diriction, we can generalize the existence proof by replacing the

boumtdr: acadition (2) by

(15)0
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isa iiven positiva function on 0. In this case, we obtain the

exJst~nOe o•' a Or'eens function of the third) kind. Alo, we note that the

domain D may be a =ultiaheeted Riema&n surfaco over the plane, instead of a

sohlioht i'4gion.

3 MA -Gen a function.

in this seotionwe study the Diriohlet problem for a linear elliptic

pertial differential equation in several independent variables by a technique

analogous to that of Section 2. Our objective is to give a more penetrating

analys 6 of the bo•dary condition, with hypotheses on the boundary far less

restrictive than analyticity. This can be achieved by appropriate use ,f

* the principle of majorization and by s stronger use of the Hahn-Banaoh theorem.

We present the material for three independent variables in space for the sake

of simplicity, and we merely remark that for any finite number of dimnsions

the steps to be caried out are si"r.

D D be a bounded domain in 'ie with boundary C having the follwirf

property3 Eeh point of 0 nann ,,.• solid sphere R which is other-

wise disjoint from D.,'0, Let P(z)-> 0 be a non-negative continuously

dLfferentiablel/ funotion of the point z in a neighborhood of D+0, and let B"

denote the linear space of all functions

f - au-Pu

iL D0C with u twice oontinuously differentiable in D+C and zero on 0. We let B

denote the Banach space of all continuous ilanations in D+4 with the norm

(If 11 max I f I

I/The considerations apply if, in place of continuous derivatives, P(z)
satisV.es a Lipschiti condition iP(z)-P(z/)Iz KjI-z'I



701 aVy "o win.Dwuse define a ntirear functional IV over 7 the forula

' That this favetionae. is uniquely dtined followThefrom thee thoer- that- a

w o of u 0 in D which vayishelos on inut be identioaue 0, sinie

it ,snot ave a positive maximum or negative o34ini in the intirioi of D.

We prove tF itvfor f in B .t,

* where

( e8) b~f) inf v(w)

eamntg all tice continuously differentiable functions Y with

(19) v - ,v f

in D s and v ;0 on 0. For the proof we note that since

v-u cannOt have a negative minimam inside D. Therefore, since v-u ýPO on 0,

we must have v-u->0 in D also, which yields the desired estimate (17). in

fact, since u is itself an admissible fuction in the determination of b(ff]

we have equality in (17) for f in B". In particular', b[O~ 0.

The functional btt]I def ined in (18),j (19) has a meaning, for any f in the

entire space B. For, le v2 be the function/

2 ~6 (]

where K is a large constant sucoh that v :,;D0 in D+Q. We have

2 2

aiid fn/Y 2 is an admissible function for (18). Thus



Afiao, we noties that

(21)L.CfI-

if f >0 throughout D, since the function v_ 0 is than admissible in (18).

The funotional-b[fl is positively hornogeneous and subadditive; i.e.,

b~tf] - tbEf] if t O, b~f14f 2 Igb~f1 1b+f2  .

The latter inequality follows from the fact that if vO'and v" are admissible

functions for the determination of b[fl and b[f2l, respeotively, then v'" + v

is admissible for b[fI+ f 2. We remark that since we already know that br.O- 0,

the subadditivity shows that b[f3-3P -b'fJ-K If t , whence bLfI is finite

and likewise bounded from below.

We now use the Hahn-Banaoh theorem to extend L [f] as a linear functional
w

over the entire space B still satisfying the inequality (17). Applying the

extended i-tl.onal to a parametrix for the equation

CuPu - 0

in a suitable way, we shall obtain the Green's function in D for this equation.

Let E be a (small) region containing z, and let g(wz)-w + ... be a

fundamental solution for Laplace's equation which is non-negative in E and

symnetrio in w and z (Ow-zI means the distance between w,z). For example,

g(w,z) could be the Green's function for Laplace's equatiot for a sphere

enolosing E. Set

E

j,11,2,..., where . 0o(w,z)-g(w,z) and dS is the volume element. We have

I (wz) 0 in E. Then
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is a prmetriz for the cquAtion 6u- Pu - 0, 0 d 1

(24)' As- PS PI 3 11> 0 •
?or a ;in the nI:irhood of a point In which we are interested, we I

obtain for all w in:D a suitable perametrix 8 (w,s) by multiplying S by a

faotion 8, with continucus derivativea of thel.first few orders, which is

identically I near a., but which vanishes identically outside a small sphere

about uz.

We now define the Green's function G(wz) in D by the formula

where S(w,z) is a parametrix in D which vanishes when w is on 0. We show

directly that 0 has as a funotion of z in D the characteristic properties of

the Green's •.v:cn, Note that the formula (25) is independent of tl-

partioulqr S(w,s) used, by virtue of (If

First, the second term on the right in (25) is bounded for z near w by

virtue of (17) and (20), so that G must 'have a pole at z-w. Second, since

the functional L is a bounded linear functional, the second term on the
w

right in (25) is continuous in z for 7 in D. Indeed, we can differentiate

with respect to the coordinates of z under the operator Lw, and we find

*~)ý P -(z).S - L t(AP(t) A- P (z)}S~ -0

The last equality follos from (16), since / -P(z)S(wz) is a twice

continuously differentiable function of w which vanishes for v on C.

Third, re prove that G 70. Let 0" be a large positive number and let

F(S) be a function of S which is identically S for S A , which is continuous
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with itu first two derivatives for all S, which has a finite limit as S--•=j

and rhich has a non-positive second derivative F'(S) for S (" . With the

parametriz S constructed in (W3), we hAvel/

-P F(s - Pý So.F 0 1' v - 0S.)

+ (F'So- 7)PG.O ,

by (2.4) and the inequalities F'S-F m6O, and F'-I-%SO, which follow from

?,WIG 0.

Using the parametrix S constructed in the paragraph immediately following

(24), we therefore have for sufficiently large "

(41- F)F(Sl- P)S .

It now follows that

F(S) L V -)F(Sl I L w P)S I

since the linear functional L wfl---0 when f is everywhere non-nigative, by

virtue of (2') i (17). Therefore

3 -s 1 L[ (w P,)sS s- I

which is the desired result,

Finally, we prove that G has boundary values 0. Let z be a point of C,

let R be a small sphere in the exterior of D and touching C at z and let R'

be a small sphere containing z and orthogonal to R. Denote the region

outside R and inside R' by E, and let g(w,z) be the Green's function for

Laplace's equation in E. For this choice of E and g, define Ii(wVz) as in

(22) and set

I/For the general differential equation, Foan always be constructed so that
the firsxt term corresponding to F'(TS )° is the dominant term, and we stil.
have the inequality.
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Then,

(27). As*PI (s*. Iw,
Algal for w on the bun'az' of E, we havu g(w,O)wO and I (ws)uO from (22).

Ther~fore, S (w,z).O0 on the boundary of E. Sic cannot have a negative

mini= in the interior of 3 by (27), it follows that

V8ltiply Sn by a an-negative funotion c, oontinuous with its first

0

few derivatives, which is ideititalI7 1 in a amall neighborhood of z and

which is identically 0 in a slightly larger neighborhood of a This yields

a parametrix S throughout D which is non-negative on C and approaches 0

as z -Pns 0@

For any parametrix S whioh vanishas on 0, the difference aI- S is twice

CoftLnuously differentiable in D and is non-negative on C. Hence, by (17),

(18), and (19), with f (A P )(S* S) and v-S-*' we obtain

L *

or
(28 1t- 1* -- 'P

010

this last limiting relation is clear outside any neighborhood of a while

inside a small neighborhood of a it follows from (27). Oonsequently

(29) 1 0 (w al

and since G 30,ý we can make the final desired conclusion
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(30) i (wu) -0

These calculations show that Q is the Green's function of D for the

linear elliptio partial differential equation LUa Pu. This oonstruction

of 0 gives a remarkably simple proof of the existenot of the Dreen's functiont,

without previous knowledge of a fundamental solution in the large. In the

special case PF O *e obtain the Green's function of Laplace's equation.

Incidentally, the syentry of the Green's function is also contained in

the above. Since G(w,z) is the Green's function for Au-Pu as a function of

the second variable, with singularity at the first variable, the function

0(M,w) is an admissible singularity function S(w,z) in (25). We immediately

obtain, therefore,

(31) G(w,Z) - G(zw)

Of course, solvability of the Dirichlet problem is obtained once 0 is

known.

4.- ko ael dgmains.

The argument of the preceding section can easily be generalized to the

case of a domain D, bounded or unbounded, with an arbitrary boundary C. Let

D lie in n-dimensional Euclidean spao'?, where n•3, and let P(z) >O be an

arbitrary non-negative function over D, continuous with continuous firat

derivatives in D. In 2 dimensions, we suppose either that D is bounded, or

if D is unbounded, that P(z) " 0. Consider the function

7 a g(IzI)
3

where Izl*r is the distance from z to the origin, and

r

I
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go that
Ag~r) - - "• • 2

The function v iý positivu, is continuous and has continuos first and second

derivatives, and

-W (u P)v <0 0
3 3

so that w >0. In 2 dimensions, with D unbounded ad P >O, select v M ,

and w3 P ; 0. Define the norm of a function f which is continuous in D b7

(32) fl,- sus pI.-

aWd let B denote the Banach space of the functions f with finite norm. Let

B1 denote the subapace of functions f in B given by

f- W -Pu

where u is continuous together with first and second derivatives in D, and

u--ý' as the boundary or the point at infinity (if D is unbounded) is approached.

Finall7, define the linear functional L. over B as in (16).

Proceeding as in Section 3, define the bound btf] for any f in B as in

(18), (19), with the condition v W0 on 0 replaced by Ila v0O as the

boundary C or the ;oint at infinity is approached. Inequality (17) applies.

An admissible function in (19) is if)iv . For,
3'

Thus
b I v 3(w) IIf t I I

as in (2o), and we also have (21).

Now extend the functional L [fl throughout B so that the inequality (17)

is retained, and define the function G(w,z) as in Section 3 by (25), where

5(wz) is n parametrix which vanishes on C and at infinity. Section 3 shows
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that O(wu), as a function of' z, stisifies the equation

andhas a fundamental singularity at z-i. As a function of the sacon

variable a, 0 is therefore a fundamental solution over D of Au-Pu.

We shall prove that, among all fundamental solutions, 0 is charaoterised

by the property of being the smallest poeitive fundamental solution. This

replaoes the condition 0- 0 on the boundary 0 because of the arbitrariness of 0.

First, G(w,z)>0 throughout D, Just as in Section 3. Second, we shall

show that the important symmetry property

(33) 0(w,u) - G(M~w)

in easily contained in our formulation. Let S,(w,z) be a parametrix with

non-negative boundary values and non-negative values at infinity (i.e., let

lk S'(w,z) >0 as w-AC or the point at infinity, if D is unbounded). Then,

by (17) and (18),

a OPz w : r ) (S (t,z) - St~)

or

Now, we have already proved that G, as a function of its second point, is

a fundamental solution with singularity at the first point. Thus, G(z,w)

(note the location of z and w) is a function of w which is continuous and has

continuous first and second derivatives throughout D, except at the point z.

Since G(z~x),; 0, the function G(z,w) is therefore admissible as a choice for

the param-trix S`(i;,z) in (34), and we obtain

This inequality' holds for any locations of the points z, w, ec that by

interchanging 2;,w the reverse inequality follows and the sym•etry property
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The symetry property (33) shown tbAt G(w~s) is a well-bahaved ftotion

of its first point.w as well, and i a ndame&al soluton as a f~mation of

this firat point with singularity at the second point.

Third, w,,.)'is the smallest positive fundaental solution in D with

oinpular•ity at m. -Por, if ?(w,a) is such a positive fundamental solution, it

can be used as the peraaetriz S'(ws) in (34), with the desired result
F(w.;,) •Q(wun) "1

We mention the following additional property of O(w,z)s If we exclude

a neighborhood ._ of the singular point a, the function G(w1,) is bounded

forw outside this neighborhood. If this were not so, _te the function F(S ) p
0

constructed in connection with (26), for sufficiently large or. Define the

function 0(w,z) as equal to G(w,z) for w in fl, and equal to F(G(w,z)) for

w outside Q. The function O(w,%) is an admissible Perametrix in (34) with

the result

But (M-P)O(ta) 0 by (26), and (21) nom gives

Selecting a point w outaide 0- where 0(w,a) GO(w;u), we contradict the inequality

F(S 0 )' So, or O(w,Z)< G(w,z), at such a point. Therefore, G(w,z) is bounded

outside i. (Indeed, we have proved that G(wpz), for w outside LL, attains

its maximum on the boundary ofi ,)

We shall conclude with several remarks concerning the generality of the

method. First, the considerations apply equally well to an arbitrary elliptic

partial differential equation satisfying a maximum principle. All that is

required is the construction of a perametrix, and this is done in 3 standard

I-
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manner using a number of terms of a Neumann expansion analogous to (23). Ala 6,

the construotion of a particular function analogos to v3 can be performed

under roaaonable assumptions conoerning the behavior of the ooefficients of

the differentlal equition on the boundary 0, The fact that the bounder' val.es

of 0 are zero, as in Seotion 3, oat be obtained by using the infinte NeXunn

seris for a Of oourse, if the equation is not self-adaoint, the adjoint0

equation will enter into the considerations.

Second, the considerations apply to Riemannian mnifolds in place of

domains in Euolidian apace. Integrals of the first, second and third kinds,

rith or without periods, *an be construoted.

A

&
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